“驾驶行为”是局部路径中细分出来的行驶单元,当然它的划分应该是多样性的,主要取决于算法实现。
行为与行为之间会保持相对独立性,但是行为切换时又具有平滑过渡的特征。车辆行驶中,何时采用何种行为,即为行为规划(也有称之为行为决策)。
单个驾驶行为,其实目前很多整车厂或科研院所做了相当多的工作,甚至有的已经推向市场。如特斯拉的车道保持、自动变道、跟车功能,这些都是驾驶行为的具体实例。但是这些行为如何切换,如何过渡,特斯拉将其交给了人。自适应巡航、车道保持、自动变道,都需要驾驶员手动操作后托管给机器,并随时准备接管驾驶。
人在同样的工况中驾驶车辆,产生的驾驶行为序列是不一样的,甚至同一行为的具体执行区别也较大,这跟人的性格、安全意识和当时的心情等有关系。比如,我们在赶时间时,变道次数会增多,超车的安全系数会降低;新手开车时,变道时机把握不好,经常急刹车等;甚至在面临事故时,是选择撞车还是撞旁边的人,不同的人可能有不同的选择。这些很多属于人的高级思维,也涉及到法律、伦理道德,目前机器还很难达到这个层次。但是人工智能或许是解决这一问题的突破口。
车辆定位
自动驾驶汽车进行全自主行驶时,需要解决三个基本问题:1.车辆在哪;2.往哪儿去;3.怎么去。
车辆在哪其实就是对车辆的定位。定位方法有多种,比如卫星定位、地面基站定位、视觉或激光定位以及惯导定位等。目前国内高校无人车使用卫星定位+基站定位方式比较多,后两种基本没有涉及到。
(▲ 卫星定位)
每一种定位方式都有其局限性,定位方式融合是趋势。
比如卫星定位系统虽然适用范围广、绝对位置精度高,但是其不适用于室内或有遮挡物区域、位置也会随时间漂移。视觉或激光定位相对位置精度非常高,无位置漂移,但是其受环境影响非常大。
将定位技术应用到无人车上时,卫星定位可以解决大范围绝对位置定位、高速公路定位以及其他开阔空间定位问题,但是当车进入隧道、高建筑物路段或室内时,定位信号会不稳定或丢失。这时需要视觉或惯导等室内定位方式去弥补。
车辆定位会直接或间接影响车辆运动控制与行为决策的实现,甚至也是感知环境所需的重要信息。在执行已经规划出来的运动轨迹时,运动控制算法需要定位信息不断反馈实际的运动状态做实时的调整。在进行行为切换时,切换时机需要充分了解到车辆所处交通环境的位置。感知方面,比如利用SLAM技术构建地图,就需要车辆的相对定位信息。
结束语
自动驾驶汽车是汽车界与机器人界碰撞、融合的产物,它汇集了机电一体化、环境感知、电子与计算机、自动控制以及人工智能等一系列高科技。汽车作为人类重要的交通工具,随着这些子技术的融合、发展与突破,必将变得越来越智能,最终实现全天候无人驾驶。