下游也有不少故事,许祖彦说,他询问了许多科研单位是否需要深紫外光源,结果得到的很多答复竟然是根本不知道还有这样的设备。
“有人说国际上没见过啊,还有这样的东西?”他笑道,“当然国际上没有了,因为这就是我们国家才有的。”
3 项目本身能获诺奖?
有科学家称助力科研突破后或能入围
该项目技术与装备在物理、化学、材料、信息工程、生命科学、资源环境等学科领域均有重大应用价值。有科学家表示,这一设备应用后可能在上述领域产生重大成果冲击诺奖,但还取决于科研人员的努力以及机遇等因素。
詹文山介绍,可以利用深紫外光源,向世界最准的离子钟冲击,把时间标准提高到世界最高水平。此外,有的设备用于研究高温超导,中国科学家所做的高温超导温度已经达到了世界最高。一旦有所突破,今后将在电力输送等领域起巨大作用。
中科院方面表示,科学技术重大成就的获得和科学研究新领域的开辟,往往是以检测仪器和技术方法上的突破为导向的。至少三分之一的诺贝尔物理学奖和化学奖授予了在测试仪器和实验方法方面有重要创新者。
有科学家表示,如果今后在应用上,取得了大量、重要的科研突破,也不排除深紫外光源的核心创新人进入诺奖评委视野。
■ 探访
神秘紫光如何产生
“晶体是核心基础”,深紫外固体激光源系列前沿装备的项目首席科学家,中科院院士陈创天在iPad上写下了这几个字,因为嗓子生病,他借助助手告诉记者,整个项目的核心就是他手上拿着的一个几厘米宽厚的晶体:大尺寸KBBF晶体。
实验室内,在一张L形的桌子上,摆着一台深紫外固态激光源装备:黑色部分为基频光、二倍频和三倍频系统,真空金属罐为六倍频系统,这里便是激光源的核心:KBBF晶体。
打出深紫外光的基本原理可以这么理解:基频光波长为1微米,是科研上通用的一种标准光源,打入晶体后,通过倍频,光波长减半,这种方式被称为“二倍频”,再减半为“三倍频”。
前两次光波长减半,可以通过激光源设备里较为普通的晶体完成,最核心的是“六倍频”,其必须在真空中完成,并且只有通过特殊的KBBF晶体才能实现:355纳米的紫外光从空气中进入真空罐的通光口,经过KBBF晶体发生倍频,光路系统“过滤”出光段再次减半的光,令其从出光口打出,此时便已得到深紫外光。